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ABSTRACT

The simulations that run on petascale and future exascale
supercomputers pose a difficult challenge for scientists to vi-
sualize and analyze their results remotely. They are limited
in their ability to interactively visualize their data mainly
due to limited network bandwidth associated with sending
and reading large data at a distance. To tackle this issue,
we provide a generalized distance visualization architecture
for large remote data that aims to provide interactive analy-
sis. We achieve this through a prioritized, multi-resolution,
streaming architecture. Since the original data size is several
orders of magnitude greater than the display and network
technologies, we stream downsampled versions of represen-
tation data over time to complete a visualization using fast
local rendering. This technique provides the necessary inter-
activity and full-resolution results dynamically on demand
while maintaining a full-featured visualization framework.

Categories and Subject Descriptors

I.3.2 [Computer Graphics]: Graphics Systems—remote
systems

General Terms

Performance

Keywords

data intensive supercomputing, large scale data, distance
visualization, remote visualization, visualization systems

1. INTRODUCTION
For Department of Energy (DOE) application teams, vi-

sualizing, analyzing, and understanding their results is the
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key to effective science. These activities are significantly
hampered by the fact that the scientists and the supercom-
puting resources they work on are located in geographically
different locations. The most significant barrier to effec-
tive distance visualization is the lack of network bandwidth
between sites. The Office of Science (SC) report entitled,
“DOE Science Networking Challenge” documents that SC
applications are generating massive data at unprecedented
rates [15]. Networks are not keeping pace with scale of data
being produced, and the report makes a plea for additional
networking resources to keep up with the flood of data. It
is important to note, that given the mismatch in speed be-
tween network technology and the rate supercomputers can
generate data, a user can still be “remote” to their local
supercomputer due to network speeds. Improving the net-
working architecture is critical, however, this research offers
to reduce the demand on the network by providing a smarter
visualization and analysis system for current and future net-
works.

As part of the analysis process, there is data transferred
from a remote site to a local scientist, which can be the
results of a visualization or the scientific data set itself. A
rough estimate of the amount of data that can be transferred
during one day over an optimistic gigabit network is shown
in the Table 1. For clarity, Table 2 highlights the disparity
between display and wide-area networking technology, i.e.,
mega/gigapixel displays and mega/gigabit networks, to our
supercomputers, which can generate data in the tera-, peta-,
and in the future, exascale ranges. Even with increasing net-
work and display technology, we can expect that supercom-
puting will be at the leading edge of technology, generating
data sizes several magnitudes greater than the correspond-
ing network speeds. Even with terascale data sizes it is a
significant challenge to transfer, store and interactively vi-
sualize data of this magnitude. The transferring of data at
this magnitude, as Table 1 shows, would take hours and up
to days to move.

Amount 108,000,000 108,000 108 0.108
per day MB GB TB PB

Table 1: An approximation of the amount of data
that can be transferred over an optimistic 10 Gbit
network.



Prefix Mega Giga Tera Peta

Data sizes 106 109 1012 1015

Technology Displays
trends and → Data Sizes →

Networks

Table 2: The prefixes for units of measure with cor-
responding technology trends, showing the disparity
between local displays, wide-area networks, and su-
percomputing data sizes.

One approach to address the remote visualization problem
is to visualize scientific data at the supercomputing site and
send the resulting images over the network. In an image-
based approach, seen in Figure 1, all of the analysis and
rendering is done at the supercomputing site, which has the
advantage of sending fixed data size images continuously,
consuming a constant bandwidth. A disadvantage to the
image-based approach is that is it inherently network band-
width and latency limited, as frames can only come as fast
as the network allows. While image compression and other
methods can be used to reduce the network bandwidth uti-
lization, the network latency penalty is always going factor
in, reducing the effective frame rate and interaction speed.
Another approach is to transfer representations, calculated
on demand by the supercomputer, and utilize local render-
ing. The representation-based approach, also seen in Figure
1, has the disadvantage that the latency to the first image
can be slower than an image-based approach, as the data
can be much larger than a single image as shown in Ta-
ble 2. Also, the representation can be larger than the client
side memory, assuming that local machines are not the same
scale as the remote supercomputer.

Figure 1: The conceptual difference between
an image-based distance visualization (top) and
representation-based distance visualization (bot-
tom). Image-based sends images over time, while
representation-based sends processed data over
time.

The missed opportunity of the image-based approach is
that it is an all or nothing proposition, where it assumes
there is little processing power at the scientist’s local site.
It always depends on remote supercomputing resources for
rendering, and the frame rate and interaction latency dur-
ing visualization will be network bound. A scientist’s local
computing resources can have a significant amount of mem-
ory and computational power to perform fast local rendering
of selected subsets of data. Our contribution is a descrip-
tion of an interactive remote large-scale data visualization
framework that supports prioritized, multi-resolution data
streaming.

In a multi-resolution representation based-approach, we
send chunks of data from the supercomputer by processing
a data set in a multi-resolution manner and sending appro-
priate data at various resolutions. If we send data chunks
that match the network speed, which also matches the dis-
play size, as seen in Table 2, this provides the capability of
interactivity at display resolution. Immediate visualization
is achieved through low resolutions, and full resolution visu-
alization is provided over time by streaming high-resolution
representations.

We use local rendering to offload the remote supercom-
puter and network bandwidth during visual interaction,
such as rotation, panning, and zooming. This allows the
supercomputer to continuously stream in prioritized high-
resolution data during interaction, particularly in prioritized
focus areas, such as zoomed in areas. Client side rendering
achieves high frame rates and low interaction latency, com-
pared to sending images, while allowing the supercomputer
to continuously filter data.

Multi-resolution also lowers the initial latency to the
first frame in this approach by the mere virtue of sending
small network sized data chunks through prioritized multi-
resolution visualization. This approach also ensures that
we do not exceed the memory limitations of the local com-
puters that are performing the rendering. We also record
meta-data used for data prioritization and culling through
multi-resolution sampling of a data set. Multi-resolution
data also reduces the I/O time spent by the remote super-
computer and reduces overall processing of low resolution
data.

2. PREVIOUS AND RELATED WORK

Figure 2: Previous work on large scale visualization
in VTK showing a sequence of prioritized streaming
of a surface coloring of the CFC concentration in
simulated ocean data. The sequence proceeds from
left to right, top to bottom. The ocean data is di-
vided into hundreds of file blocks and progressively
streamed to the local rendering resource. The blocks
fill in from front to back. This is because the pieces
are prioritized by shortest distance from the cam-
era. This system is also abstractly represented by
Figure 5.

Massive data set sizes can make visualization difficult or
impossible, we previously designed a visualization architec-



ture based on VTK [17] that would reorganize a large data
set into smaller pieces, and operationally stream the pieces
incrementally to generate a visualization [1]. This architec-
ture reduced I/O and processing time by only operating on
pieces that contribute to the final result. This was achieved
through prioritization and culling of data blocks by meta-
data characteristics. The processing order of pieces is such
that pieces are displayed incrementally based on estimat-
ing the importance of their contribution to the final image
through meta-data. Each visualization operation in the pro-
cessing pipeline, such as reading, clipping, isosurfacing, and
rendering, can independently generate a partial priority es-
timate based on view and data characteristics to generate a
final combined estimate to cull and order pieces. Using the
new architecture, a visualization renders in a significantly
shorter time than the time it takes the standard VTK ar-
chitecture to create a final image, along with low latency to
the appearance of important portions via data prioritization.
Figure 2 shows a sequence of streaming ocean data with the
streaming system architecture available in ParaView [2, 10].
Our current work is built upon this streaming premise to

be able to handle large data, but modifies the architecture
to use multi-resolution data to match display sizes and net-
work bandwidth for interactive distance visualization. The
past system had difficulty in handling the case for visualiz-
ing an entire data set, as the system would have to touch
and stream the entire data at full resolution, while the new
system provides a much faster multi-resolution solution for
immediate results.
Other distance and large scale visualization systems that

focus on the delivery and prioritization. The remote visu-
alization found in VTK and ParaView [3], as well as VisIt
[4] and Ensight Gold, employ the client/render server/data
server architecture to transmit images and/or geometry for
large data visualization. Luke and Hansen study the spec-
trum of visualization system schemes for distance visualiza-
tion that use the client, server, or both [11]. Klosowski and
Silva incorporate priority for a rendering budget system that
attempts to prioritize rendering for best-effort results in a
limited time frame [8]. Corrêa et al. [7] uses scene visibil-
ity for a pre-fetching prioritization in interactive out-of-core
rendering of large models.
Visualization systems can handle large data by using

multi-resolution techniques, where coarse resolution is used
in overviews and fine-resolution is used in details for fo-
cus+context visualization. Stolte et al. describe a formalism
and different methods of zooming for multi-resolution visu-
alization [18].
Our system is built upon multi-resolution visualization of

structured field data, so we compare ourselves to similar
multi-resolution visualization methods. To produce a piece
of a requested resolution in our system, a read operation
reads a spatial block of sampled multi-resolution data with
meta-data prioritization information. LaMar et al. [9], Nor-
ton and Rockwood [12], Clyne and Rast [6], and Wang et
al. [19] use multi-resolution wavelet decomposition and re-
construction to store data at various levels-of-detail for ren-
dering. Childs et al. use a kernel-based resampling method
to reduce the footprint of a large data set to scale down
the data to fit in memory [5]. Pascucci and Frank use a
data indexing scheme using a progressive z-curve reordering
and indexing for multi-resolution traversals and visualiza-
tion of large regular grids [13]. Prohaska et al. present

a multi-resolution renderer that uses the HDF5 file format
and reader to store blocks and writes preview low-resolution
data to disk as needed [14]. Rusinkiewicz and Levoy [16]
use a streaming splatting system which progressively refines
images while being streamed over the network.

3. METHODOLOGY OVERVIEW

Figure 3: Our streaming multi-resolution visualiza-
tion system architecture applied to climate data.
The visualization progresses from top to bottom,
left to right. Data is read from disk using a multi-
resolution representation of the data to reduce the
amount of data sent over the network which is ren-
dered client side for fast interaction. The visual-
ization starts at a coarse resolution for a fast global
overview. In a zoomed in portion, the data is refined
and streamed to the client which progressively up-
dates the visualization. The rest of the data outside
the view frustum is not touched and left at coarse
resolution. The blue lines show grid granularity dif-
ferences between coarse and fine grain regions. This
system is also abstractly represented in Figure 6.

Our focus is a prioritized, multi-resolution representation-
based remote visualization approach. Based on our previous
observations in the introduction, we will rely on the super-
computer that stores user data as part of the visualization
system for reading, computing, and sending prioritized sub-
sets of multi-resolution data. The client side will perform
rendering after the supercomputer has sent the appropriate
level-of-detail data for fast visual interaction. We prioritize
multi-resolution data transfers by sending important low-
resolution pieces of data over the network first, and progres-



sively refining them. Once the data is local, scientists can do
visualization interactively, offloading interaction tasks from
supercomputing resources.
The key additions to our remote visualization system are:

• a server side (supercomputer) data reader that is able
to provide multi-resolution pieces of data

• a client side (local computer) multi-resolution renderer

• visualization pipeline meta-information that allows for
the reader, renderer, and in-between filters to be able
to communicate resolution information

Figure 4: The original VTK/ParaView pipeline.

Figure 5: The VTK/ParaView pipeline with priori-
tized streaming support.

Figure 6: The VTK/ParaView pipeline with priori-
tized multi-resolution streaming support.

Figure 4 shows the original visualization pipeline. Figure 5
shows the streaming visualization architecture, also shown in
Figure 2. Figure 6 shows our new multi-resolution distance
model, mirrored by Figure 3 showing the actual system in
operation which has been implemented in VTK/ParaView.
To prioritize data transfers, we leveraged our streaming

techniques [1] for processing massive data. Our previous
solution is to divide a large data set into smaller pieces and
then to stream the pieces incrementally through memory,
running the visualization algorithms on each piece. A key
aspect of this out-of-core/streaming approach is that once
the data is divided into pieces, decisions can be made about
which pieces are processed and in what order.
Our addition to the culling and prioritization architec-

ture is support for pieces of varying resolutions from struc-
tured grids. The resolution of a piece is improved over time
based on its priority. This allows the architecture to make
trade-offs between improved performance through sending
low-resolution data, to match the network bottleneck, with
increasing resolution over time. By showing data at full-
resolution in areas of interest, and coarser resolution in other

areas, the scientist is able to focus in detailed areas of inter-
est quickly, through optimized utilization of the network.

Increasing resolution is done through a spatial split, where
a low-resolution piece is spatially split into a number of chil-
dren with higher resolution, but with the same data size
for network streaming and memory footprint limitations. A
priority value is calculated for each piece, where high pri-
ority pieces will eventually be replaced by higher resolution
children in time. In a piece replacement or refinement, a
piece’s resolution is improved by reading in improved res-
olution children from disk, sending it up the pipeline for
filtering, which eventually reaches the client, who incremen-
tally updates the visualization.

The system architecture via the multi-resolution renderer
drives the piece splitting and refining process, by request-
ing the children to replace a low-resolution parent, up the
pipeline chain. It chooses the piece with the highest priority
from a priority queue to refine. The multi-resolution reader
sends the children down the pipeline and the child pieces are
sorted back into the priority queue for further future refine-
ment to higher resolution. With this architecture, the new
system creates a streaming multi-resolution distance visual-
ization that increases in resolution over time. This multi-
resolution functionality is general enough to work with all
visualization operations, such as isosurfaces, cut planes, and
clipping, to produce multi-resolution streaming results.

4. IMPLEMENTATION
We utilize the VTK/ParaView streaming, prioritized,

culling architecture [1, 17], as the starting point for our
distance visualization. This architecture is used for a dis-
tance visualization in a representation-based (data or geom-
etry transfer) mode. The reader and filters reside on the
supercomputer, while the renderer runs on the client side,
connected by a wide area network. The renderer requests
data pieces to fill in a visualization, which are incrementally
served in priority order by the supercomputer running the
reader and filters on the data set. We add multi-resolution
visualization to this pipeline, as the original streaming archi-
tecture runs at full data resolution. Streaming at full data
resolution (Figure 5) has the drawback of taking a very long
time for overview visualizations, and our multi-resolution
solution (Figure 6) aims to improve it.

4.1 Multi-resolution Reader
In order to perform multi-resolution visualization, many

systems, noted in the related work, preprocess a data set
in place to generate a multi-resolution or progressive format
for fast reading of level-of-detail data. Preserving the data
as it is stored is a fundamental requirement for many of our
application teams. It can be very time and space consuming
to rewrite the data into a secondary format due to nearly
random seeks. In many simulation codes, writing the results
usually only happens intermittently for select time steps,
because it takes so much time, compared to computation,
to write out the data. Also, there is a general reluctance
by the scientists to rewrite their data in place, due to the
extra time and effort and wariness that their data may be
corrupted or lost.

Our alternative for accessing data is a multi-resolution
data reader that preserves the original data at the high-
est resolution and creates additional files to store multi-
resolution data for coarser resolutions. The multi-resolution



representations form a virtual tree structure with a specific
height and degree. The leaves of the tree are at the full
resolution of the data, which is stored/left unaltered in the
original data file. Each level up the tree is a multi-resolution
data sampling of the higher resolution data lower in the tree.
The tree is created in the following way:

• The user selects a degree where 2degree is the number
of children of each parent node in the tree.

• The user selects a stride that will stride through the
data. The sampling at a given level k is defined by
stridedegree∗k.

• The user selects a height, which is the number of levels
of resolution to create.

• The system reads the user’s data file of size D bytes
and writes the height− 1 resolution levels to disk.

The system creates a multi-resolution representation of
the data by sampling the data, and writes the multi-
resolution levels and meta-data to disk as independent files
while keeping the full-resolution file intact.

Figure 7: A multi-resolution representation tree
with stride = 2, degree = 2 and height = 2. The box in
the upper left represents the multi-resolution file for
level 0 and the box on the lower left is the original
file and the full data for level 1. The tree on the
right is the symbolic view of the multi-resolution
representation of the data, which is a virtual spatial
organization of the data. As can be seen on the left,
data and multi-resolution data is actually stored in
the original file format/order, but at various strides
(samplings).

The purpose of the additional multi-resolution files is to
significantly speed up read access to the coarser resolutions.
Attempting to read this data from the original file by strid-
ing (adaptively sampling) is too time consuming due to the
strides and seeks needed to obtain data from disk. By writ-
ing additional files, organized for fast read access on low
resolution, we can significantly reduce the read access for
multi-resolution data. The original data represents the fully
refined, highest resolution level and is not modified at all.
The computational cost of this generation step is reason-

able, roughly O(D) in time because the entire file is read
at a cost of O(D) and multi-resolution representations are
written to disk at a cost of O(D). Specifically, the original
file is read an element at a time and the element is written
to all multi-resolution files that it resides in. The size of the
additional files containing multi-resolution representations

can be calculated as sum of a geometric series. This formula
is given as:

height−1∑

k=1

rk =
rheight − r

r − 1

r =
1

stridedegree

The above sum is the additional percent of file, as multiple
of D, to compute the size of the additional multi-resolution
files. r in the above equation is a substitution variable to
simplify the size of a resolution level k. This sum of rk for all
k will not exceed 1, assuming reasonable bounds (stride > 1,
height > 1, degree > 0 and stride, height and degree are
all integers). Therefore the total size required to store the
original file and the sum of multi-resolution files will not ever
exceed 2 times the original data size, and likely to be less in
most cases.

Choosing degree is usually selected based upon the di-
mensionality of the data. If the user has 2D data, then a
degree of 2 should be used. Likewise for 3D data, a degree
of 3 should be used. In these cases, the data will be re-
duced in each dimension when generating resolution levels.
In our study of POP ocean data, we used a degree of 2, even
though it is 3D data, since the data is relatively “flat” in the
z component.

Currently, choosing a good stride and height is more diffi-
cult. They dictate the relative quality in image change from
one resolution to the next and number of resolution levels.
Specifying stride depends on user preference on how much
time they are willing to wait between resolution level up-
dates and if the change in image was adequate enough for
the time taken. Given that the data size of a resolution k is
D × rk, and given a bandwidth b, we can solve for the time
taken to transfer a data set, which is D × rk/b, assuming
that server processing time is 0.

height determines the the lowest resolution level data frac-
tion, rheight−1, and the number of levels between highest
and lowest resolution. A user study would be necessary to
derive a user satisfaction curve based on height and stride,
measured across time taken, image quality change, lowest
resolution, and number of resolution changes. Though ul-
timately, we suspect that good stride and height for user
satisfaction is heavily user and data driven. In our obser-
vation, a height of 5 and a stride of 2 were satisfactory for
the POP data. It may be likely that these values are good
starting points.

Though there is an upper limit on height. As height con-
trols the number of resolution levels, it also determines the
lowest resolution data and data piece size. Given height,
the lowest resolution data is size D × rheight−1. Stream-
ing piece sizes are also the same size as the lowest res-
olution. Therefore, the highest resolution data is bro-

ken into stridedegree
height−1

pieces. If height is too large
then the streaming piece size becomes very small, and net-
work and processing latency becomes a dominating fac-
tor in streaming the data. This, in particular, is why
image-based distance visualization can have poor interac-
tivity and frame rates. The time to transfer a data set
at the highest resolution, assuming that there is one net-
work send per piece, where the latency is l and the band-



width is b, is l × stridedegree
height−1

+D/b. It is clear that

l × stridedegree
height−1

can become an overriding time fac-
tor, and height should not be too large. This can be circum-
vented by sending multiple pieces at once, by grouping piece
requests into one request and network send, to reduce the
number of sends and network latency, assuming the client
can handle multiple pieces.
In our implementation, we do not apply box filtering,

gaussian filtering, wavelet decomposition, or or space fill-
ing curve reorganization methods to generate our multi-
resolution data. While these methods can be easily used
within our framework to generate multi-resolution levels,
they can significantly increase pre-processing times due to
nearly random read and/or write access to the disk and po-
tentially multiple passes. For comparison, we use a regular
striding to scan through the file exactly once in linear order
and dump all resolution levels in one pass. This allows us to
generate multi-resolution levels in approximately the same
time it takes to read the data set once. The drawback to
this method is that strided sampling will introduce aliasing
error greater than than using a box filter, gaussian filter, or
wavelet method. We make this cost/quality trade-off in or-
der to have a very fast pre-processing step. It is important
to note the “correct” data will eventually be shown in our
visualization system at the highest resolution in time.
The additional benefit of reading the data in and con-

structing the multi-resolution data is that we are also able to
collect the meta-data information, as well, which is used for
prioritization and culling. This additionally speeds up the
visualization pipeline by ignoring data that can be culled,
and sending important high resolution data first.

4.2 Multi-resolution Renderer
The multi-resolution streaming renderer runs on the client

side and primarily drives the piece processing requests down-
stream to the reader. The multi-resolution renderer operates
similarly to the streaming VTK pipeline renderer, but re-
quests pieces that refine high priority, low resolution pieces
that will increase the resolution.
To render a visualization, given a particular view frustum,

the renderer can determine what data should be requested
by the priority queue and a kd-tree type splitting algorithm.
Data outside of the view frustum is “wasted”, and therefore
not requested in this system. If a piece is on top of the
priority queue, it is split spatially, and pieces of the next
higher resolution are requested. Splits are made along the
longest axis. A parent piece may be split into 2degree pieces,
and the request for those pieces are sent down the pipeline.
The request is met by the reader, which sends the pieces
back up the pipeline to be filtered and sent to the client for
rendering.
The benefit of this process is that there is an im-

mediate image displayed on the client by using low-
resolution data that the network can quickly send and
then progressively update the visualization over time.
This is roughly calculated by timeToImage = latency +
dataSize/networkBandwidth.
The rendering logic for the multi-resolution renderer fol-

lows:

• request and render the lowest resolution data

• put the lowest resolution data in a priority queue

• while priority queue is not empty

– dequeue top element

– split it into children

– calculate the priority of the children, or determine
if they can be culled

– request the remaining children in priority order,
and render them

– push the children into the priority queue

The renderer will continue until there can be no more
refinement, that is, full-resolution data has been retrieved.
This can continuously happen while visual interaction takes
place, which is one of the benefits of client side render-
ing. On zoomed in areas, the renderer will be able to finish
quickly since many pieces will fall outside the view frustum.

Piece caching is a client side optimization, for fast reren-
dering, assuming that the client has memory to spare on
top of piece size. There are various cache replacement poli-
cies that can used such as least recently used (LRU), in the
case that you expect the user to zoom in and pan a lot. If
you expect the user to zoom in, and then zoom out, a more
logical replacement policy should be that lowest resolution
pieces are held the longest with an LRU policy on top of
that. Higher resolution pieces will always be flushed before
low resolution pieces are replaced in that case.

4.3 Pipeline Information Exchange
With our multi-resolution reader and renderer in a new

VTK/ParaView pipeline, we additionally have to modify the
meta-information data structure that is passed in the visual-
ization pipeline. In the pipeline, meta-information is passed
upstream and downstream for notification of data modifica-
tion for upstream sinks and downstream data requests. In
the previous streaming architecture [1], the meta-data is at-
tached for prioritization and culling through a PRIORITY
meta-data key, along with data characteristics, such as min
and max values. These previous pipeline modifications al-
lows the client side renderer to sort and prioritize data chunk
requests so that more important pieces can be streamed in
first.

For our system, there are additional modifications to this
meta-data that are necessary for the multi-resolution ren-
dering. These additions allow the reader and renderer to
communicate requested pieces at various resolution levels
and spatial extents. In our implementation, we introduce
the REQUEST RESOLUTION key and utilize the existing
REQUEST UPDATE EXTENT keys. When updating the
image frame, the renderer will request pieces of various spa-
tial ranges and resolution levels through these meta-data
keys. During the information and execution phase of the
reader, it will map the REQUEST UPDATE EXTENT and
REQUEST RESOLUTION meta-data into the appropriate
data piece which will be sent back upstream to the renderer.

Filters do not need observe the multi-resolution keys in the
pipeline and act upon them. Thus, most filters, in particular
algorithms that are only local modifications or embarrass-
ingly parallel, do not need to be aware of the new multi-
resolution keys and will work as-is. Examples of filters that
do work unmodified can be seen in Figure 11. An example
filter that will not work as-is is the streamline filter, since it
is a global algorithm. A streamline filter would need to be
specifically be updated for to work in this multi-resolution
system, similar to a parallel streamlines algorithm.



For prioritization, it is the case that many filters, if not
all filters, change the data in the pipeline. Therefore, fil-
ters may invalidate any meta-data associated with a piece,
such as min-max values or position. Since prioritization and
culling is based on meta-data, a filter has to update any
meta-data that is changed through modification. This can
be made note of by a filter through additional flags intro-
duced into the meta-data structure. If a filter does not up-
date meta-data, in our implementation, prioritization mech-
anism conservatively assumes the worst, and prioritization
will be disabled by default because the meta-data is unreli-
able.

5. RESULTS
To ground our research work with a real-world application

problem, we are working closely with climate simulation sci-
entists at Los Alamos National Laboratory (LANL). The
LANL climate team uses the Jaguar supercomputer at Oak
Ridge National Laboratory (ORNL) to run their Parallel
Ocean Program (POP) ocean simulations. The team is gen-
erating approximately 24 fields, on a grid of 3600 by 2400
by 42 (33 GBs total), at 40 time steps a day. The generated
data size is approximately 1.5 terabytes a day. At a mea-
sured transfer rate of 10 Mbps between LANL and ORNL
(which actually is more realistically less than half of that
due to firewalls), this would take approximately 370 hours
(over 15 days) to transfer the entire run from ORNL back to
LANL. Due to the size of the data and the remote location,
a scalable, remote visualization solution was needed.
The tests for our system were performed with a modi-

fied version of ParaView that implements multi-resolution
streaming. This was run on a Mac Pro 2 × 3GHz Quad
Core Xeon with 16 GB of memory with a Seagate SATA
ST3250820AS P disk drive (manufacturer reports 300MB/s
peak disk bandwidth and 8 MB disk cache). Both the client
and server were run on the computer, and we varied the tests
between 1Mb to 1Gb simulated bandwidth with a 100ms la-
tency. Before every test the operating system file cache was
flushed, otherwise the data set would be cached in memory
skewing the timings.
The following timings were done with a single field of float

data from the POP data set. This data set at full resolution
is 3600×2400×42 at 1.35 GB. For the multi-resolution data,
we used stride = 2, height = 5 and degree = 2. We refer
to specific resolutions of the data as n × n × 1 to represent
the sampling of the full-resolution data in x and y by n and
z by 1. The splitting on refinement occurs in the x and y
dimensions for each level since they are much longer than
the z dimension. The original data is virtually broken into
256 spatial pieces. The resolutions are: 1800× 1200× 42 in
64 virtual pieces of 346 MB total, 900×600×42 in 16 virtual
pieces of 86.5 GB total, 450× 300× 42 in 4 virtual pieces of
22.6 MB total, and the lowest resolution is 225×150×42 in
1 piece at 5.4 MB. The multi-resolution data representation
on disk only takes 1/3 ∗ 1.35GB extra disk space.
In the following test, we performed a surface rendering

of the POP ocean data of the whole data set, with an es-
timate of 8Mbps network speed and 100ms latency. The
major win for our system is an immediate good quality im-
age, with increasing refinement over time, seen in Figure
8. Our method jumps to nearly 90% image accuracy (mea-
sured by CIELUV color space distance from the final image,
normalized by maximum error) in the first frame, while the

Figure 8: Comparison of standard VTK streaming
(as in Figure 5) vs. our new multi-resolution stream-
ing (as in Figure 6) of image quality over time. In
our new system, we immediately get an image that
is of decent quality, and improve it from that point
on. The times are based on an estimate of 8Mbps
network and 100ms latency.

standard streaming method slowly creeps up to a good qual-
ity image.

Standard streaming, starts with a blank image incremen-
tally completing portions of the image frame over time.
Multi-resolution streaming sends a low resolution represen-
tation, shown almost instantaneously and then begins to
stream pieces incrementally to augment the low-resolution
data.

Full Extent 16x16x1 8x8x1 4x4x1 2x2x1 Full
Render 0.03 s 0.10 s 0.38 s 1.4 s 5.6 s

Table 3: Client side render times for rendering the
whole spatial extent of the POP data set at different
resolutions.

Our multi-resolution method works for quick full
overviews, as there are low delivery times for low resolu-
tion data, seen in the bottom curves of Figure 9. At our
target bandwidth for our ORNL case of 10Mbps, it takes
approximately 1 second to deliver and render the 16x16x1
low resolution data. After the representation is delivered,
the user can interact with it continuously at a minimum
(the render time is taken from the instance of the first in-
cremental render) of 33 frames per second (.03 seconds per
frame), seen from Table 3 showing renderings for the entire
spatial extent. While the user is interacting with this data,
higher resolution data is continuously being streamed to the
client, improving the rendering as the data is acquired.

A caveat is that visualization for the full data set at the
highest resolution takes a significant amount of time for the
data, seen in the top curves of Figure 9. The times level off as
bandwidth increases (to the right) because of constant costs,
such as network latency, for the high resolution data. This
is primarily due to the high cost of sending the data. This is
solved through our prioritization and culling methods, seen
in Figure 10, where we visualize a zoomed in portion of the



Figure 9: Times for end-to-end image completion
(top graph) and data send (bottom graph) for vari-
ous resolutions at various bandwidths for the whole
spatial extent of the POP data set. Network latency
is assumed to be 100 ms.

data set.

Zoomed 16x16x1 8x8x1 4x4x1 2x2x1 Full
Render 0.03 s 0.03 s 0.05 s 0.09 s 0.27 s

Table 4: Client side render times for zoomed in por-
tion of the POP data set seen in Figure 11.

The zoomed in area, shown in Figure 11, is a portion of the
data set near the Antarctic Ocean. By prioritizing and only
sending high resolution data for that view area, the time to
end-to-end completion is significantly reduced, by an order
of magnitude in time. This can be seen by comparing the
graph times between Figure 9 and Figure 10. For example,
with our 10Mbps scenario, the zoomed full resolution data
for that area is delivered in 22 seconds. Before that point in
time, the user is able to visualize low resolution versions of
the data at high frame rate, seen in Table 4. The different
times for delivery at can be seen in Figure 10, such that
various resolutions are continuously delivered between 1 and

Figure 10: Times for end-to-end image completion
and data send for various resolutions at various
bandwidths for the zoomed in POP data set, seen
in Figure 11. The network latency is assumed to be
100 ms.

22 seconds.
Our disk scheme does not take a significant amount of time

to create the multi-resolution representation on disk. In Ta-
ble 5, we show the time to read the full data off of disk,
which takes 30.0 seconds. For the system to create the addi-
tional multi-resolution data, the total time for our scenario
was 46.5 seconds for 4 additional levels, which includes both
the read and write times. If we go to the extreme case of
creating 20 levels for the same data set, the time to write the
multi-resolution data increases due to writing 20 files simul-
taneously, to approximately 5 times the read time. Though,
20 levels is impractical, because spatial chunks/read sizes
become one float each, and sending one float at a time is
not practical due to network latency.

Keeping the data as-is, but with additional multi-
resolution files, has not had a significant impact on our read
times for processing. Tables 6 and 7 show the read times
for full extent multi-resolution streaming and zoomed ex-
tent multi-resolution streaming. The time to read the full
data set, but in small spatial extents (streaming pieces), is



only 5.6 seconds longer at 35.6 seconds, rather than 30.0
seconds if a full linear read is done on the data. We can also
get small spatial portions of the data quickly as can be seen
in the read times for zoomed reading.

Time to Read Time to Read and Time to Read and
Whole File Create 4 levels Create 20 levels

30.0 s 46.5 s 150.6 s

Table 5: Various timings for reading the original
POP data and processing the POP data for multi-
resolution levels.

Full Extent 16x16x1 8x8x1 4x4x1 2x2x1 Full
Read 0.18 s 0.92 s 5.0 s 11.8 s 35.6 s

Accum. Read 0.18 s 1.1 s 6.1 s 17.9 s 53.5 s

Table 6: Timings to read the whole spatial extent of
the POP data set. Read times are the time to read
the data a specific resolution level. Accum. Read
times are the time to read the data a specific reso-
lution level and all previous lower resolution levels.

Zoomed 16x16x1 8x8x1 4x4x1 2x2x1 Full
Read 0.18 s 0.47 s 1.4 s 2.8 s 6.1 s

Accum. Read 0.18 s 0.64 s 2.0 s 4.8 s 11.0 s

Table 7: Timings to read a zoomed spatial extent of
the POP data set. The zoomed portion can be seen
in Figure 11. Read times are the time to read the
data a specific resolution level. Accum. Read times
are the time to read the data a specific resolution
level and all previous lower resolution levels.

6. CONCLUSION
We have described our prioritized multi-resolution stream-

ing visualization system for distance visualization of large
data. As shown by our results, we are able to provide
overviews and prioritized details on demand quickly to the
user. By the virtue of sending representational data, the
client is able to perform fast rendering, to increase visual
interactivity. This improvement to the VTK pipeline is gen-
eral enough to work with existing visualization filters and
analysis.
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Figure 11: An example of our multi-resolution sys-
tem visualizing a zoomed in portion of the POP
data set with arbitrary filters and representations in
VTK/ParaView. The left hand images are coarsest
resolution, and the right hand images are the high-
est resolution. Top to bottom are surface rendering,
isosurfacing, thresholding, and point rendering.
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